1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
use crate::addr::Addr;
use std::convert::From;
use std::fmt;
////////////////////////////////////////////////////////////////////////////////
// Types
////////////////////////////////////////////////////////////////////////////////
/// A struct for representing a general purpose register (eg, `x0`, `x1`, ..., `x32`).
/// This is used in the [`Instruction`](crate::decode::Instruction) enum to distinguish
/// the source and destination registers from other numeric data contained in an instruction.
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub struct Reg(pub(crate) u8);
/// A struct for representing a value that can be held inside of a general purpose register
/// (eg, `x0`, `x1`, ..., `x32`).
///
/// While all general purpose registers are 32-bits wide in rv32i, the *interpretation*
/// of those bits depends on the operation in question. For example, some instructions
/// (such as `lw`) treat registers values as signed integers, while other instructions
/// (such as `lwu`) treat them as unsigned integers.
///
/// Therefore, [`riscy`](crate) uses this type to prevent programmers from assuming
/// one interpretation or the other, and instead, it forces them to explicitly cast any
/// `RegVal` to the representation they need.
///
/// All immediate values used by the [`decode`](crate::decode) module
/// (such as [`ImmS`](crate::decode::ImmS)) can also be cast to `RegVal`.
///
/// ```
/// // get the value of the first argument register, `a0` (also known as `x10`)
/// let value = riscv.reg(10);
/// println!("a0 = {} (as an unsigned integer)", u32::from(value));
/// println!("a0 = {} (as an signed integer)", i32::from(value));
/// ```
///
/// Several operations which correspond to register-register instructions (eg, `add`, `xor`),
/// are provided as either methods or as traits.
///
/// ```
/// let value1 = RegVal::from_u32(2);
/// let value2 = RegVal::from_u32(3);
///
/// // addition
/// println!("value1 + value2 = {}", u32::from(value1 + value2));
///
/// // bitwise exclusive or
/// println!("value1 ^ value2 = {}", u32::from(value1 ^ value2));
///
/// // left logical shift
/// println!("value1 << value2 = {}", u32::from(value1.shift_left_logical(value2));
/// ```
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub struct RegVal(pub(crate) u32);
////////////////////////////////////////////////////////////////////////////////
// RegVal
////////////////////////////////////////////////////////////////////////////////
impl RegVal {
/// Compares two `RegVal`s, interpreting them both as signed integers.
pub fn less_than_signed(&self, other: RegVal) -> bool {
self.to_i32() < other.to_i32()
}
/// Compares two `RegVal`s, interpreting them both as unsigned integers.
pub fn less_than_unsigned(&self, other: RegVal) -> bool {
self.to_u32() < other.to_u32()
}
/// Compares two `RegVal`s, interpreting them both as signed integers.
pub fn greater_than_equal_to_signed(&self, other: RegVal) -> bool {
self.to_i32() >= other.to_i32()
}
/// Compares two `RegVal`s, interpreting them both as unsigned integers.
pub fn greater_than_equal_to_unsigned(&self, other: RegVal) -> bool {
self.to_u32() >= other.to_u32()
}
/// Does a logical left shift of this register by the value in another register.
///
/// A logical left shift is one where the vacant bits are all set to `0`.
///
/// The value in `other` is interpreted as an unsigned integer.
///
/// The `sll` instruction (shift left logical) will only ever supply small values
/// for `other`. The behavior of this function is only guaranteed for values that
/// could come from that instruction.
pub fn shift_left_logical(&self, other: RegVal) -> RegVal {
let RegVal(x) = *self;
let RegVal(y) = other;
RegVal(x << y)
}
/// Does a logical right shift of this register by the value in another register.
///
/// A logical right shift is one where the vacant bits are all set to `0`. This is
/// most common when the register value is interpreted as an unsigned integer, since
/// it has the effect of dividing by `2` to the power of `other`.
///
/// The value in `other` is interpreted as an unsigned integer.
///
/// The `srl` instruction (shift right logical) will only ever supply small values
/// for `other`. The behavior of this function is only guaranteed for values that
/// could come from that instruction.
pub fn shift_right_logical(&self, other: RegVal) -> RegVal {
let RegVal(x) = *self;
let RegVal(y) = other;
RegVal(x >> y)
}
/// Does an arithmetic right shift of this register by the value in another register.
///
/// An arithmetic right shift is one where the vacant bits are all set to a copy of
/// the most signfint bit. This is most common when the register value is interpreted
/// as a signed integer, since it has the effect of dividing by `2` to the power of `other`,
/// while preserving the sign.
///
/// The value in `other` is interpreted as an unsigned integer.
///
/// The `srl` instruction (shift right logical) will only ever supply small values
/// for `other`. The behavior of this function is only guaranteed for values that
/// could come from that instruction.
pub fn shift_right_arithmetic(&self, other: RegVal) -> RegVal {
let x = self.to_i32();
let y = other.to_i32();
RegVal::from_i32(x >> y)
}
pub fn from_u32(val: u32) -> RegVal {
val.into()
}
pub fn from_i32(val: i32) -> RegVal {
val.into()
}
pub fn from_addr(addr: Addr) -> RegVal {
let Addr(val) = addr;
val.into()
}
pub fn to_u32(self) -> u32 {
self.into()
}
pub fn to_i32(self) -> i32 {
self.into()
}
pub fn to_addr(self) -> Addr {
self.into()
}
}
////////////////////////////////////////////////////////////////////////////////
// Reg
////////////////////////////////////////////////////////////////////////////////
impl Reg {
fn friendly(&self) -> String {
let xi = self.0;
match xi {
0 => return "zero".to_owned(),
1 => return "ra".to_owned(),
2 => return "sp".to_owned(),
3 => return "gp".to_owned(),
4 => return "tp".to_owned(),
_ => (),
};
if xi >= 5 && xi <= 7 {
return format!("a{}", xi - 5);
}
if xi >= 8 && xi <= 9 {
return format!("s{}", xi - 8);
}
if xi >= 10 && xi <= 17 {
return format!("a{}", xi - 10);
}
if xi >= 18 && xi <= 27 {
return format!("s{}", xi - 16);
}
if xi >= 28 && xi <= 31 {
return format!("s{}", xi - 25);
}
unreachable!()
}
}
////////////////////////////////////////////////////////////////////////////////
// Display
////////////////////////////////////////////////////////////////////////////////
impl fmt::Display for Reg {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.friendly())
}
}
////////////////////////////////////////////////////////////////////////////////
// Convert
////////////////////////////////////////////////////////////////////////////////
impl From<u32> for RegVal {
fn from(val: u32) -> RegVal {
RegVal(val)
}
}
impl From<i32> for RegVal {
fn from(val: i32) -> RegVal {
RegVal(val as u32)
}
}
impl From<Addr> for RegVal {
fn from(addr: Addr) -> RegVal {
let Addr(val) = addr;
RegVal(val)
}
}
impl From<RegVal> for u32 {
fn from(val: RegVal) -> u32 {
val.0
}
}
impl From<RegVal> for i32 {
fn from(val: RegVal) -> i32 {
val.0 as i32
}
}
impl From<RegVal> for Addr {
fn from(val: RegVal) -> Addr {
Addr(val.0)
}
}
impl From<u8> for Reg {
fn from(val: u8) -> Reg {
assert!(val < 32, "{} is not a valid register number", val);
Reg(val)
}
}
////////////////////////////////////////////////////////////////////////////////
// RegVal Arithmetic
////////////////////////////////////////////////////////////////////////////////
impl std::ops::Add for RegVal {
type Output = RegVal;
fn add(self, other: RegVal) -> Self {
let RegVal(x) = self;
let RegVal(y) = other;
let (result, _did_overflow) = x.overflowing_add(y);
RegVal(result)
}
}
impl std::ops::Sub for RegVal {
type Output = RegVal;
fn sub(self, other: RegVal) -> Self {
let RegVal(x) = self;
let RegVal(y) = other;
let (result, _did_overflow) = x.overflowing_sub(y);
RegVal(result)
}
}
impl std::ops::BitAnd for RegVal {
type Output = RegVal;
fn bitand(self, other: RegVal) -> Self {
let RegVal(x) = self;
let RegVal(y) = other;
RegVal(x & y)
}
}
impl std::ops::BitOr for RegVal {
type Output = RegVal;
fn bitor(self, other: RegVal) -> Self {
let RegVal(x) = self;
let RegVal(y) = other;
RegVal(x | y)
}
}
impl std::ops::BitXor for RegVal {
type Output = RegVal;
fn bitxor(self, other: RegVal) -> Self {
let RegVal(x) = self;
let RegVal(y) = other;
RegVal(x ^ y)
}
}