1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
use super::RegVal;
use std::fmt;
////////////////////////////////////////////////////////////////////////////////
// Types
////////////////////////////////////////////////////////////////////////////////
/// A struct to representing an address value.
///
/// Addresses in rv32i are 32-bits wide. We usually write them out in hexadecimal.
///
/// `Addr`s are used in the interface of the [`Memory`](crate::memory::Memory) trait.
/// An `Addr` is used to name the location of a specific byte in the memory space.
///
/// An important operation for operating for working with `Addr`s is adding or
/// subtracting an offset. Several RISC-V instructions take a register together with
/// a small immediate value (for example, `lw`, load word, and `jalr`, jump-and-link return).
/// The value in the register becomes the base address, but the instruction then operates on
/// memory on a small distance away from the base address. And so, several integer types,
/// (including `u32`, `i32`, and [`RegVal`](crate::reg::RegVal) can be added to an `Addr`.
///
/// When using offsets, the order must be: `Addr + offset`.
///
/// It doesn't make sense to add an `Addr` to another `Addr`, so this operation is not provided.
///
/// `Addr`s may be converted to `RegVal`s and vice versa:
///
/// ```
/// let value = RegVal::from_u32(0x2000_0000);
/// let addr: Addr = value.into();
/// let new_value = (addr + 0x0a).into();
/// ```
/// `Addr`s can also be compared with `<`, `<=`, etc. This is useful for certain implementations of
/// [`Memory`](crate::memory::Memory) which would like to store `Addr`s in
/// [`BTreeMap`](https://doc.rust-lang.org/stable/std/collections/struct.BTreeMap.html)s.
///
/// While `Addr` (together with the [`Memory`](crate::memory::Memory) interface) give every byte
/// in memory a unique address, physical hardware often operates with memory on the level of words.
/// That is, it is common that memory might only operate on groups of four bytes. Because of this,
/// some operations will only work when the `Addr` has a proper alignment.
///
/// No restrictions on alignment are given in this version of `riscy`, but this is subject
/// (and likely) to change in future versions.
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)]
pub struct Addr(pub(crate) u32);
impl Addr {
pub fn new(addr: u32) -> Addr {
Addr(addr)
}
pub(crate) fn align_to_halfword(&self) -> Addr {
let Addr(addr) = *self;
Addr(addr & !0x00_00_00_01)
}
}
////////////////////////////////////////////////////////////////////////////////
// Coversion
////////////////////////////////////////////////////////////////////////////////
impl std::convert::From<Addr> for u32 {
fn from(addr: Addr) -> u32 {
addr.0
}
}
impl std::convert::From<Addr> for usize {
fn from(addr: Addr) -> usize {
addr.0 as usize
}
}
////////////////////////////////////////////////////////////////////////////////
// Display
////////////////////////////////////////////////////////////////////////////////
impl fmt::Display for Addr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let Addr(addr) = self;
let addr_hi = (addr & 0xffff_0000) >> 16;
let addr_lo = addr & 0x0000_ffff;
write!(f, "0x{:04x}{:04x}", addr_hi, addr_lo)
}
}
////////////////////////////////////////////////////////////////////////////////
// Add
////////////////////////////////////////////////////////////////////////////////
impl std::ops::Add<usize> for Addr {
type Output = Addr;
fn add(self, offset: usize) -> Self {
let Addr(here) = self;
let (there, _did_overflow) = here.overflowing_add(offset as u32);
Addr(there)
}
}
impl std::ops::Add<u32> for Addr {
type Output = Addr;
fn add(self, offset: u32) -> Self {
let Addr(here) = self;
let (there, _did_overflow) = here.overflowing_add(offset);
Addr(there)
}
}
impl std::ops::Add<i32> for Addr {
type Output = Addr;
fn add(self, offset: i32) -> Self {
let Addr(here) = self;
let (there, _did_overflow) = here.overflowing_add(offset as u32);
Addr(there)
}
}
impl std::ops::Add<RegVal> for Addr {
type Output = Addr;
fn add(self, offset: RegVal) -> Self {
let Addr(here) = self;
let RegVal(offset) = offset;
let (there, _did_overflow) = here.overflowing_add(offset);
Addr::new(there)
}
}
////////////////////////////////////////////////////////////////////////////////
// AddAssign
////////////////////////////////////////////////////////////////////////////////
impl std::ops::AddAssign<usize> for Addr {
fn add_assign(&mut self, offset: usize) {
let Addr(here) = self;
let (there, _did_overflow) = here.overflowing_add(offset as u32);
*self = Addr(there)
}
}
impl std::ops::AddAssign<u32> for Addr {
fn add_assign(&mut self, offset: u32) {
let Addr(here) = self;
let (there, _did_overflow) = here.overflowing_add(offset);
*self = Addr(there)
}
}
impl std::ops::AddAssign<i32> for Addr {
fn add_assign(&mut self, offset: i32) {
let Addr(here) = self;
let (there, _did_overflow) = here.overflowing_add(offset as u32);
*self = Addr(there)
}
}
impl std::ops::AddAssign<RegVal> for Addr {
fn add_assign(&mut self, offset: RegVal) {
let Addr(here) = self;
let RegVal(offset) = offset;
let (there, _did_overflow) = here.overflowing_add(offset);
*self = Addr(there)
}
}
////////////////////////////////////////////////////////////////////////////////
// Order
////////////////////////////////////////////////////////////////////////////////
impl std::cmp::PartialOrd for Addr {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
self.0.partial_cmp(&other.0)
}
}
impl std::cmp::Ord for Addr {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.0.cmp(&other.0)
}
}