1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
//! Base helper routines for a code generator.
use crate::collections::Set;
use crate::grammar::free_variables::FreeVariables;
use crate::grammar::repr::*;
use crate::lr1::core::*;
use crate::rust::RustWrite;
use crate::util::Sep;
use std::io::{self, Write};
/// Base struct for various kinds of code generator. The flavor of
/// code generator is customized by supplying distinct types for `C`
/// (e.g., `self::ascent::RecursiveAscent`).
pub struct CodeGenerator<'codegen, 'grammar: 'codegen, W: Write + 'codegen, C> {
/// the complete grammar
pub grammar: &'grammar Grammar,
/// some suitable prefix to separate our identifiers from the user's
pub prefix: &'grammar str,
/// types from the grammar
pub types: &'grammar Types,
/// the start symbol S the user specified
pub user_start_symbol: NonterminalString,
/// the synthetic start symbol S' that we specified
pub start_symbol: NonterminalString,
/// the vector of states
pub states: &'codegen [Lr1State<'grammar>],
/// where we write output
pub out: &'codegen mut RustWrite<W>,
/// where to find the action routines (typically `super`)
pub action_module: String,
/// custom fields for the specific kind of codegenerator
/// (recursive ascent, table-driven, etc)
pub custom: C,
pub repeatable: bool,
}
impl<'codegen, 'grammar, W: Write, C> CodeGenerator<'codegen, 'grammar, W, C> {
#[allow(clippy::too_many_arguments)]
pub fn new(
grammar: &'grammar Grammar,
user_start_symbol: NonterminalString,
start_symbol: NonterminalString,
states: &'codegen [Lr1State<'grammar>],
out: &'codegen mut RustWrite<W>,
repeatable: bool,
action_module: &str,
custom: C,
) -> Self {
CodeGenerator {
grammar,
prefix: &grammar.prefix,
types: &grammar.types,
states,
user_start_symbol,
start_symbol,
out,
custom,
repeatable,
action_module: action_module.to_string(),
}
}
/// We often create meta types that pull together a bunch of
/// user-given types -- basically describing (e.g.) the full set
/// of return values from any nonterminal (and, in some cases,
/// terminals). These types need to carry generic parameters from
/// the grammar, since the nonterminals may include generic
/// parameters -- but we don't want them to carry *all* the
/// generic parameters, since that can be unnecessarily
/// restrictive.
///
/// In particular, consider something like this:
///
/// ```notrust
/// grammar<'a>(buffer: &'a mut Vec<u32>);
/// ```
///
/// Here, we likely do not want the `'a` in the type of `buffer` to appear
/// in the nonterminal result. That's because, if it did, then the
/// action functions will have a signature like:
///
/// ```ignore
/// fn foo<'a, T>(x: &'a mut Vec<T>) -> Result<'a> { ... }
/// ```
///
/// In that case, we would only be able to call one action fn and
/// will in fact get borrowck errors, because Rust would think we
/// were potentially returning this `&'a mut Vec<T>`.
///
/// Therefore, we take the full list of type parameters and we
/// filter them down to those that appear in the types that we
/// need to include (those that appear in the `tys` parameter).
///
/// In some cases, we need to include a few more than just that
/// obviously appear textually: for example, if we have `T::Foo`,
/// and we see a where-clause `T: Bar<'a>`, then we need to
/// include both `T` and `'a`, since that bound may be important
/// for resolving `T::Foo` (in other words, `T::Foo` may expand to
/// `<T as Bar<'a>>::Foo`).
pub fn filter_type_parameters_and_where_clauses(
grammar: &Grammar,
tys: impl IntoIterator<Item = TypeRepr>,
) -> (Vec<TypeParameter>, Vec<WhereClause>) {
let referenced_ty_params: Set<_> = tys
.into_iter()
.flat_map(|t| t.free_variables(&grammar.type_parameters))
.collect();
let filtered_type_params: Vec<_> = grammar
.type_parameters
.iter()
.filter(|t| referenced_ty_params.contains(t))
.cloned()
.collect();
// If `T` is referenced in the types we need to keep, then
// include any bounds like `T: Foo`. This may be needed for
// the well-formedness conditions on `T` (e.g., maybe we have
// `T: Hash` and a `HashSet<T>` or something) but it may also
// be needed because of `T::Foo`-like types.
//
// Do not however include a bound like `T: 'a` unless both `T`
// **and** `'a` are referenced -- same with bounds like `T:
// Foo<U>`. If those were needed, then `'a` or `U` would also
// have to appear in the types.
debug!("filtered_type_params = {:?}", filtered_type_params);
let filtered_where_clauses: Vec<_> = grammar
.where_clauses
.iter()
.filter(|wc| {
debug!(
"wc = {:?} free_variables = {:?}",
wc,
wc.free_variables(&grammar.type_parameters)
);
wc.free_variables(&grammar.type_parameters)
.iter()
.all(|p| referenced_ty_params.contains(p))
})
.cloned()
.collect();
debug!("filtered_where_clauses = {:?}", filtered_where_clauses);
(filtered_type_params, filtered_where_clauses)
}
pub fn write_parse_mod<F>(&mut self, body: F) -> io::Result<()>
where
F: FnOnce(&mut Self) -> io::Result<()>,
{
rust!(self.out, "");
rust!(self.out, "#[rustfmt::skip]");
rust!(
self.out,
"#[allow(non_snake_case, non_camel_case_types, unused_mut, unused_variables, \
unused_imports, unused_parens, clippy::all)]"
);
rust!(self.out, "mod {}parse{} {{", self.prefix, self.start_symbol);
rust!(self.out, "");
self.write_uses()?;
body(self)?;
rust!(self.out, "}}");
Ok(())
}
pub fn write_uses(&mut self) -> io::Result<()> {
self.out
.write_uses(&format!("{}::", self.action_module), self.grammar)?;
if self.grammar.intern_token.is_some() {
rust!(
self.out,
"use self::{}lalrpop_util::lexer::Token;",
self.prefix
);
} else {
rust!(
self.out,
"use {}::{}ToTriple;",
self.action_module,
self.prefix
);
}
Ok(())
}
pub fn start_parser_fn(&mut self) -> io::Result<()> {
let parse_error_type = self.types.parse_error_type();
let (type_parameters, parameters, mut where_clauses);
let intern_token = self.grammar.intern_token.is_some();
if intern_token {
// if we are generating the tokenizer, we just need the
// input, and that has already been added as one of the
// user parameters
type_parameters = vec![];
parameters = vec![];
where_clauses = vec![];
} else {
// otherwise, we need an iterator of type `TOKENS`
let mut user_type_parameters = String::new();
for type_parameter in &self.grammar.type_parameters {
user_type_parameters.push_str(&format!("{}, ", type_parameter));
}
type_parameters = vec![
format!(
"{}TOKEN: {}ToTriple<{}>",
self.prefix, self.prefix, user_type_parameters,
),
format!(
"{}TOKENS: IntoIterator<Item={}TOKEN>",
self.prefix, self.prefix
),
];
parameters = vec![format!("{}tokens0: {}TOKENS", self.prefix, self.prefix)];
where_clauses = vec![];
if self.repeatable {
where_clauses.push(format!("{}TOKENS: Clone", self.prefix));
}
}
rust!(
self.out,
"{}struct {}Parser {{",
self.grammar.nonterminals[&self.start_symbol].visibility,
self.user_start_symbol
);
if intern_token {
rust!(
self.out,
"builder: {}lalrpop_util::lexer::MatcherBuilder,",
self.prefix,
);
}
rust!(self.out, "_priv: (),");
rust!(self.out, "}}");
rust!(self.out, "");
rust!(self.out, "impl {}Parser {{", self.user_start_symbol);
rust!(
self.out,
"{}fn new() -> {}Parser {{",
self.grammar.nonterminals[&self.start_symbol].visibility,
self.user_start_symbol
);
if intern_token {
rust!(
self.out,
"let {0}builder = {1}::{0}intern_token::new_builder();",
self.prefix,
self.action_module
);
}
rust!(self.out, "{}Parser {{", self.user_start_symbol);
if intern_token {
rust!(self.out, "builder: {}builder,", self.prefix);
}
rust!(self.out, "_priv: (),");
rust!(self.out, "}}"); // Parser
rust!(self.out, "}}"); // new()
rust!(self.out, "");
rust!(self.out, "#[allow(dead_code)]");
self.out
.fn_header(
&self.grammar.nonterminals[&self.start_symbol].visibility,
"parse".to_owned(),
)
.with_parameters(Some("&self".to_owned()))
.with_grammar(self.grammar)
.with_type_parameters(type_parameters)
.with_parameters(parameters)
.with_return_type(format!(
"Result<{}, {}>",
self.types.nonterminal_type(&self.start_symbol),
parse_error_type
))
.with_where_clauses(where_clauses)
.emit()?;
rust!(self.out, "{{");
Ok(())
}
pub fn define_tokens(&mut self) -> io::Result<()> {
if self.grammar.intern_token.is_some() {
// if we are generating the tokenizer, create a matcher as our input iterator
rust!(
self.out,
"let mut {}tokens = self.builder.matcher(input);",
self.prefix
);
} else {
// otherwise, convert one from the `IntoIterator`
// supplied, using the `ToTriple` trait which inserts
// errors/locations etc if none are given
let clone_call = if self.repeatable { ".clone()" } else { "" };
rust!(
self.out,
"let {}tokens = {}tokens0{}.into_iter();",
self.prefix,
self.prefix,
clone_call
);
rust!(
self.out,
"let mut {}tokens = {}tokens.map(|t| {}ToTriple::to_triple(t));",
self.prefix,
self.prefix,
self.prefix
);
}
Ok(())
}
pub fn end_parser_fn(&mut self) -> io::Result<()> {
rust!(self.out, "}}"); // fn
rust!(self.out, "}}"); // impl
Ok(())
}
/// Returns phantom data type that captures the user-declared type
/// parameters in a phantom-data. This helps with ensuring that
/// all type parameters are constrained, even if they are not
/// used.
pub fn phantom_data_type(&self) -> String {
let phantom_bits: Vec<_> = self
.grammar
.type_parameters
.iter()
.map(|tp| match *tp {
TypeParameter::Lifetime(ref l) => format!("&{} ()", l),
TypeParameter::Id(ref id) => id.to_string(),
})
.collect();
format!("core::marker::PhantomData<({})>", Sep(", ", &phantom_bits),)
}
/// Returns expression that captures the user-declared type
/// parameters in a phantom-data. This helps with ensuring that
/// all type parameters are constrained, even if they are not
/// used.
pub fn phantom_data_expr(&self) -> String {
let phantom_bits: Vec<_> = self
.grammar
.type_parameters
.iter()
.map(|tp| match *tp {
TypeParameter::Lifetime(_) => "&()".to_string(),
TypeParameter::Id(ref id) => id.to_string(),
})
.collect();
format!(
"core::marker::PhantomData::<({})>",
Sep(", ", &phantom_bits),
)
}
}